Python Integration Guide
This guide provides comprehensive Python code examples for integrating with NeuraSutra API Management, with a focus on image models.
Basic Setup
Installation
pip install requests pillow
Client Configuration
import requests
import base64
from pathlib import Path
from PIL import Image
from io import BytesIO
class NeuraSutraClient:
"""Simple client for NeuraSutra API Management."""
def __init__(self, api_key: str, base_url: str = "http://localhost:8000/api/v1"):
self.api_key = api_key
self.base_url = base_url
self.session = requests.Session()
self.session.headers.update({
"Content-Type": "application/json",
"X-API-Key": api_key
})
def generate(self, service: str, model: str, inputs: list, parameters: dict = None, history: list = None):
"""Make a generation request."""
payload = {
"service_name": service,
"model_name": model,
"input": inputs
}
if parameters:
payload["parameters"] = parameters
if history:
payload["history"] = history
response = self.session.post(f"{self.base_url}/generate", json=payload)
return response.json()
def get_usage(self):
"""Get current usage stats."""
response = self.session.get(f"{self.base_url}/usage")
return response.json()
# Initialize client
client = NeuraSutraClient(api_key="sk_your_api_key_here")
Input Types Reference
The API uses typed inputs for flexibility:
# Text input
{"type": "text", "name": "input", "content": "Your prompt here"}
# Image input (base64 data URL)
{"type": "image", "name": "input", "content": "..."}
# Context (background information)
{"type": "text", "name": "context", "content": "Background context..."}
# Reference (for image editing)
{"type": "image", "name": "reference", "content": "data:image/png;base64,..."}
Text Generation
Simple Text Request
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": "Explain quantum computing in simple terms."}
],
parameters={
"temperature": 0.7,
"max_output_tokens": 500
}
)
if result["status"] == "success":
for item in result["output"]:
if item["type"] == "text" and item["name"] == "output":
print(item["content"])
print(f"\nCost: ${result['cost']['total']:.4f}")
else:
print(f"Error: {result['error']['message']}")
With System Prompt
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": "What are the best practices for API design?"}
],
parameters={
"system_instruction": "You are a senior software architect. Provide concise, actionable advice.",
"temperature": 0.5
}
)
With Conversation History
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": "What about error handling?"}
],
history=[
{"role": "user", "content": "I'm building a REST API in Python."},
{"role": "assistant", "content": "Great! I can help with that. What framework are you using?"},
{"role": "user", "content": "FastAPI"}
],
parameters={"temperature": 0.7}
)
Image Analysis (Vision)
Analyzing a Local Image
def encode_image(image_path: str) -> str:
"""Encode image to base64 data URL."""
path = Path(image_path)
mime_type = {
".jpg": "image/jpeg",
".jpeg": "image/jpeg",
".png": "image/png",
".gif": "image/gif",
".webp": "image/webp"
}.get(path.suffix.lower(), "image/png")
with open(path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
return f"data:{mime_type};base64,{b64}"
# Analyze an image
image_url = encode_image("product_photo.jpg")
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": "Describe this image in detail. What objects are visible?"},
{"type": "image", "name": "input", "content": image_url}
]
)
if result["status"] == "success":
description = next(
item["content"] for item in result["output"]
if item["type"] == "text" and item["name"] == "output"
)
print(description)
Comparing Multiple Images
image1 = encode_image("before.jpg")
image2 = encode_image("after.jpg")
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": "Compare these two images. What changed between them?"},
{"type": "image", "name": "input", "content": image1},
{"type": "image", "name": "input", "content": image2}
]
)
Extract Structured Data from Image
import json
result = client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": """
Analyze this receipt image and extract:
- Store name
- Date
- Items (name, quantity, price)
- Total amount
Return as JSON.
"""},
{"type": "image", "name": "input", "content": encode_image("receipt.jpg")}
],
parameters={"temperature": 0.2}
)
if result["status"] == "success":
text = next(
item["content"] for item in result["output"]
if item["type"] == "text"
)
# Parse JSON from response
receipt_data = json.loads(text)
print(json.dumps(receipt_data, indent=2))
Image Generation
Text-to-Image
def save_generated_image(data_url: str, output_path: str):
"""Decode and save a base64 image."""
# Remove data URL prefix
header, b64_data = data_url.split(",", 1)
image_bytes = base64.b64decode(b64_data)
image = Image.open(BytesIO(image_bytes))
image.save(output_path)
return image
# Generate an image
result = client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[
{"type": "text", "name": "input", "content": "A serene Japanese garden with a koi pond at sunset, digital art style"}
],
parameters={
"number_of_images": 1,
"aspect_ratio": "16:9"
}
)
if result["status"] == "success":
for i, item in enumerate(result["output"]):
if item["type"] == "image" and item["name"] == "output":
img = save_generated_image(item["content"], f"generated_{i}.png")
print(f"Saved: generated_{i}.png ({img.size})")
print(f"Cost: ${result['cost']['total']:.4f}")
Generate Multiple Images
result = client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[
{"type": "text", "name": "input", "content": "Minimalist logo design for a tech startup called 'Nexus', clean lines"}
],
parameters={
"number_of_images": 4, # Generate 4 variations
"aspect_ratio": "1:1"
}
)
if result["status"] == "success":
images = [item for item in result["output"] if item["type"] == "image"]
for i, img_item in enumerate(images):
save_generated_image(img_item["content"], f"logo_option_{i+1}.png")
Image Editing with Reference
# Edit an existing image based on instructions
reference_image = encode_image("original_photo.jpg")
result = client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[
{"type": "text", "name": "input", "content": "Remove the background and replace with a gradient blue sky"},
{"type": "image", "name": "reference", "content": reference_image}
],
parameters={"aspect_ratio": "preserve"}
)
if result["status"] == "success":
for item in result["output"]:
if item["type"] == "image":
save_generated_image(item["content"], "edited_photo.png")
Style Transfer
# Apply style from one image to another
content_image = encode_image("photo.jpg")
style_image = encode_image("style_reference.jpg")
result = client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[
{"type": "text", "name": "input", "content": "Apply the artistic style from the reference to the main image"},
{"type": "image", "name": "input", "content": content_image},
{"type": "image", "name": "reference", "content": style_image}
]
)
Complete Image Workflow Example
class ImageWorkflow:
"""Complete image processing workflow using NeuraSutra API."""
def __init__(self, api_key: str):
self.client = NeuraSutraClient(api_key=api_key)
def analyze_image(self, image_path: str) -> dict:
"""Analyze an image and return structured data."""
result = self.client.generate(
service="google-gemini",
model="gemini-2.0-flash",
inputs=[
{"type": "text", "name": "input", "content": """
Analyze this image and provide:
1. Main subject
2. Color palette (top 5 colors)
3. Mood/atmosphere
4. Suggested improvements
Return as JSON.
"""},
{"type": "image", "name": "input", "content": encode_image(image_path)}
],
parameters={"temperature": 0.3}
)
if result["status"] == "success":
text = next(item["content"] for item in result["output"] if item["type"] == "text")
return {"analysis": json.loads(text), "cost": result["cost"]["total"]}
return {"error": result["error"]["message"]}
def generate_variations(self, prompt: str, count: int = 4) -> list:
"""Generate multiple image variations."""
result = self.client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[{"type": "text", "name": "input", "content": prompt}],
parameters={"number_of_images": count, "aspect_ratio": "1:1"}
)
if result["status"] == "success":
images = []
for i, item in enumerate(result["output"]):
if item["type"] == "image":
path = f"variation_{i}.png"
save_generated_image(item["content"], path)
images.append(path)
return {"images": images, "cost": result["cost"]["total"]}
return {"error": result["error"]["message"]}
def enhance_with_prompt(self, image_path: str, enhancement: str) -> str:
"""Enhance an image based on text instructions."""
result = self.client.generate(
service="google-gemini",
model="gemini-3-pro-image-preview",
inputs=[
{"type": "text", "name": "input", "content": enhancement},
{"type": "image", "name": "reference", "content": encode_image(image_path)}
]
)
if result["status"] == "success":
for item in result["output"]:
if item["type"] == "image":
output_path = "enhanced_" + Path(image_path).name
save_generated_image(item["content"], output_path)
return {"image": output_path, "cost": result["cost"]["total"]}
return {"error": result["error"]["message"]}
def get_remaining_budget(self) -> dict:
"""Check remaining API budget."""
usage = self.client.get_usage()
return {
"hour_remaining": usage["hour"]["limit_block"] - usage["hour"]["cost"],
"day_remaining": usage["day"]["limit_block"] - usage["day"]["cost"],
"month_remaining": usage["month"]["limit_block"] - usage["month"]["cost"]
}
# Usage
workflow = ImageWorkflow(api_key="sk_your_api_key")
# Check budget first
budget = workflow.get_remaining_budget()
print(f"Hourly budget remaining: ${budget['hour_remaining']:.2f}")
# Analyze an image
analysis = workflow.analyze_image("input.jpg")
print(json.dumps(analysis["analysis"], indent=2))
# Generate variations
variations = workflow.generate_variations(
"Modern minimalist living room with natural lighting",
count=4
)
print(f"Generated {len(variations['images'])} images for ${variations['cost']:.4f}")
# Enhance an existing image
enhanced = workflow.enhance_with_prompt(
"photo.jpg",
"Increase contrast, enhance colors, add subtle vignette"
)
print(f"Enhanced image saved: {enhanced['image']}")
Error Handling
def safe_generate(client, **kwargs):
"""Generate with comprehensive error handling."""
try:
result = client.generate(**kwargs)
if result["status"] == "success":
# Check for warnings
if result.get("warnings"):
for warning in result["warnings"]:
print(f"Warning: {warning}")
return result
# Handle API errors
error = result["error"]
if error["code"] == "RATE_LIMIT_EXCEEDED":
print(f"Rate limit hit: {error['details']['period']}")
print(f"Reset at: {error['details']['reset_at']}")
elif error["code"] == "MODEL_NOT_FOUND":
print(f"Model not available: {kwargs.get('model')}")
elif error["code"] == "INVALID_INPUT":
print(f"Invalid input: {error['message']}")
else:
print(f"Error: {error['message']}")
return None
except requests.exceptions.ConnectionError:
print("Cannot connect to API server")
return None
except requests.exceptions.Timeout:
print("Request timed out")
return None
except Exception as e:
print(f"Unexpected error: {e}")
return None
Next Steps
- Streaming responses for real-time text generation
- Troubleshooting common issues